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We prove that any smooth Riemannian manifold of non-negative scalar
curvature and with a strictly mean convex and compact boundary com-

ponent can be (C2) extended beyond the component to have non-
negative scalar curvature and to enjoy anyone of the following three

types of (new) boundary: strictly convex, totally geodesic or strictly

concave. The extension procedure can be applied for instance to “pos-
itive mass” type of theorems.

1 Introduction.

We prove an isometric extension procedure for manifolds with non-negative scalar
curvature and strictly mean convex, compact boundary. The extended manifolds have
non-negative scalar curvature and can be made to have anyone of the following three
types of boundary: strictly convex, totally geodesic or strictly concave (we recall the
precise definitions below). Theorems of the sort, namely stating that every element of
a class A of Riemannian manifolds with boundary can be isometrically embedded into
an element of a special (and hopefully interesting) class B of Riemannian manifolds,
are usually appreciated for the sole reason that they permit to import geometric
properties enjoyed by elements in the class B to those in the class A. An example of
a procedure of the type, indeed not entirely foreign to the one discussed here, is given
in [5]. There, an isometric extension procedure was introduced for manifolds with
boundary that preserve lower (sectional) curvature bounds and produces a totally
geodesic boundary. The tool proved to be useful to study a series of questions on
convergence and compactness of Riemannian manifolds with boundary. We will point
out some applications of the present work after recalling basic terminology and after
stating the extension Theorem (Theorem 1). The proof is given in Section 2.

A manifold M is Ck+1, k ≥ 0 if the transition functions of coordinate charts are
Ck+1. A Riemannian manifold (M, g) is Ck if M is Ck+1 and the metric components
of g in any coordinate chart are Ck. (M, g) is smooth if k = ∞. We will say that
a Ck (k ≥ 0) Riemannian manifold (M̄, ḡ) is an extension of a smooth Riemannian
manifold (M, g) if there is a Ck+1 embedding from (M, g) into (M̄, ḡ), which is also
a Ck isometry.

1e-mail: martin@aei.mpg.de
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Let (M, g) be a smooth Riemannian manifold. We will denote compact boundary
components of M by ∂cM . Let Ω ⊂ M be a region with smooth boundary ∂Ω. Denote
by h the metric on ∂Ω inherited from g, by Θ the second fundamental form of ∂Ω with
respect to the outgoing normal2 and by θ = trhΘ the mean curvature (trh is the trace
with respect to h). Under this notation recall that ∂cM is strictly mean-convex (resp.
mean-concave) if θ > 0 (resp. < 0) and is strictly convex (resp. strictly concave) if
Θ > 0 (resp. < 0) (as a symmetric two-form, i.e. Θ(v, v) > 0 (resp. < 0) for any
v $= 0). ∂cM is totally geodesic if Θ = 0.

Theorem 1 (The extension Theorem). Let (M, g) be a smooth Riemannian manifold
(n = dim(M) ≥ 3) of non-negative scalar curvature and with a strictly mean convex
and compact boundary component ∂cM . Then, there are extensions beyond ∂cM
to C2 manifolds (M̄, ḡ), of non-negative scalar curvature R and enjoying any of the
following three types of boundaries: strictly convex, totally geodesic or strictly concave.
Moreover, in any of the extensions, M̄ \ ϕ(Int(M)) is diffeomorphic to ∂cM × [0, 1].

In simple terms, the manifold (M, g) can be extended to a “collar” around ∂cM to
have non-negative scalar curvature and a new boundary component, replacing ∂cM ,
with either strictly convex, totally geodesic or strictly concave boundary (as wished).
As a matter of fact the manifolds M̄ will be C∞, but ḡ just C2.

Remark 1 As a byproduct of the construction, (M, g) can be extended beyond ∂cM
by adding a collar, in such a way that the new boundary component ∂cM̄ has second
fundamental form Θ̄ enjoying the lower bound

(1) Θ̄ >
θ0

2(n − 1)
h̄

where θ0 > 0 is a lower bound for the mean curvature of ∂cM and h̄ is the metric on
∂cM̄ induced from ḡ. Moreover the distance from ∂cM̄ to ∂cM can be made as small
as wished still preserving (1).

The manifold M = [0, 1]×T 2 (T 2 = S1×S1) with the flat metric g = dx2 +dθ21 +dθ22
(θ1 and θ2 are the angular coordinates of the S1 factors), cannot be extended beyond
its boundary to have strictly convex boundary and non-negative scalar curvature.
This shows that the hypothesis of strict convexity of the boundary component of M
cannot be removed.

A simple example of a manifold M with R ≥ 0, strictly mean convex boundary
which is neither convex, totally geodesic or concave, together with extensions M̄i, i =
1, 2, 3 with strictly convex, totally geodesic or strictly concave boundary (respectively
to i = 1, 2, 3) is given in the following. Consider the unit two-sphere S2 in polar
coordinates (from a point) {r,ϕ} and the manifold S1 with coordinate {θ}. Then, on
S2 × S1 consider the metric g = dr2 + sin2 rdϕ2 + (1 + ε cos 4r)2dθ2. If ε > 0 is small
enough g has positive scalar curvature. The manifold M = {(r,ϕ, θ)/0 ≤ r ≤ π/6}

2If ς is the outgoing unit normal then for any two vectors v1 and v2 in Tq∂Ω (q ∈ ∂Ω) we have
Θ(v1, v2) =< ∇v1 ς, v2 >.
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endowed with g has (if ε is small enough) mean convex boundary but not strictly
convex boundary. The manifolds M̄i = {(r,ϕ, θ)/0 ≤ r ≤ ri} (i = 1, 2, 3) with
r1 = π/3, r2 = π/2 and r3 = 2π/3, and endowed with g are extensions with strictly
convex, totally geodesic and strictly concave boundary respectively.

There are a number of deformation techniques that one can find in the litera-
ture [2], [4] related to “positive mass” type of theorems which share some elements
with the extension theorem developed here but seem to be of a different nature. As
in these works one can apply also the extension Theorem 1 to obtain “positive mass”
type of theorems. To illustrate this we show here how the (Riemannian) positive mass
theorem for asymptotically flat manifolds with non-negative scalar curvature and with
strictly mean convex compact boundaries (see [3] and references therein) can be eas-
ily reduced to the standard positive mass theorem for boundary-less asymptotically
flat manifold. Consider (M, g) a smooth manifold of non-negative scalar curvature,
asymptotically flat ends, and strictly mean convex (in the outward direction) bound-
ary with possibly many connected components. Theorem 1 allows to extend (M, g)
to a manifold (M̄, ḡ) with totally geodesic boundary and non-negative scalar curva-
ture. The manifold (M̄, ḡ) can then be “doubled” along its boundary to obtain a
boundary-less, asymptotically flat C2 manifold (the regularity C2 is seen easily from
the construction of M̄) ( ¯̄M, ¯̄g) of non-negative scalar curvature. If ( ¯̄M, ¯̄g) is known to
have positive mass at any one of its ends (for instance if ¯̄M is spin) then, obviously,
(M, g) will also have positive mass at any one of its ends. Further applications will
be discussed elsewhere.

2 Proof of the main result.

From now on we will assume, without loss of generality and to simplify notation,
that (M, g) is a smooth Riemannian manifold and that ∂M has only one connected
component and is compact. Therefore we will write ∂M instead of ∂cM .

Below we will describe a simple and concrete setup to prove Theorem 1. We collect
it in the statement of Lemma 1 from which Theorem 1 directly follows. A proof of
the Lemma is given afterwards.

Consider the tubular neighborhoods T (∂M, Γ) of ∂M

T (∂M, Γ) := {p ∈ M/dist(p, ∂M) ≤ Γ}

If Γ− > 0 is small enough, then for any point p ∈ T (∂M, Γ−) there is a unique
point q(p) ∈ ∂M such that dist(p, ∂M) = dist(p, q(p)) and, moreover, the map ψ :
T (∂M, Γ−) → [−Γ−, 0] × ∂M given by ψ(p) = (−dist(p, ∂M), q(p)) is a smooth
diffeomorphism. Denote by s(p) = −dist(p, ∂M) the coordinate on [−Γ−, 0]. Also
denote by h̄(s) the metric induced from ψ∗g into {s} × ∂M . Note, of course, that
{s}× ∂M is canonically diffeomorphic to ∂M and also note that for this reason h̄(s),
s ∈ [−Γ−, 0] can be thought (as we will do) as a smooth path of metrics over ∂M .
Abusing slightly notation we will write g = ds2+h̄ (this is justified because (of course)
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(g − ds2)|(s,q)(v1 + a1∂s, v2 + a2∂s) = h̄(s)|q(v1, v2) for any q ∈ ∂M , v1, v2 in Tq∂M
and real numbers a1, a2). Finally, we will use the notation

h0 := h̄

∣∣∣∣
s=0

, h′
0 :=

∂

∂s
h̄

∣∣∣∣
s=0−

, h′′
0 :=

∂2

∂s2
h̄

∣∣∣∣
s=0−

(2)

for h̄(s) and its first and second normal (one sided) derivatives at s = 0.
Now, if we can extend the path h̄(s), which is so far defined in the interval [−Γ−, 0],

to a path of metrics, (also denoted by) h̄(s), on the interval [Γ−, Γ+], Γ+ > 0, in such
a way that when we consider h̄(s) restricted only to [0, Γ+], it is a C2 path of metrics
satisfying:

I. the Riemannian metric ds2 + h̄ (over [0, Γ+] × ∂M) has non-negative scalar
curvature,

II. h0 = h̄

∣∣∣∣
s=0

, h′
0 = ∂

∂s h̄

∣∣∣∣
s=0+

, h′′
0 = ∂2

∂s2 h̄

∣∣∣∣
s=0+

,

III. ∂
∂s h̄

∣∣∣∣
s=Γ+

> 0 (resp. = 0, < 0),

then, the metric ḡ = ds2 + h̄, over [−Γ−, Γ+]×∂M , will be C2, will have non-negative
scalar curvature, and moreover, as

Θ
∣∣∣∣
s=Γ+

=
1
2
∂

∂s
h̄

∣∣∣∣
s=Γ+

then (from III) the boundary component {Γ+} × ∂M will be strictly convex (resp.
totally geodesic or strictly concave). In such case the Riemannian manifold

(M, g) ∪ψ ([−Γ−, Γ+] × ∂M, ḡ)

where ∪ψ identifies, via ψ, the region T (∂M, Γ−) on M with the region [−Γ−, 0]×∂M
on [−Γ−, Γ+] × ∂M , would be the desired extension claimed in the Theorem 1. It
follows that Theorem 1 is a direct consequence of the following Lemma.

Lemma 1 Let (M, g) be a smooth Riemannian manifold of non-negative scalar cur-
vature and mean convex, compact and connected boundary. Let h0, h′

0, h
′′
0 be as in (2).

Then there is a C2 path of metrics h̄(s), s ∈ [0, Γ+], for some Γ+ > 0, over ∂M and
satisfying I-II-III.

Proof: We will concentrate to obtain an extension (M̄, ḡ) with strictly convex bound-
ary (case > 0 in III) and we will indicate at the end how to obtain the other two
possibilities.

We will use h0 as a background metric to estimate expressions derived from sym-
metric two-tensors. In particular we will use the following (usual) inner product.
Let U be a symmetric two-tensor field on ∂M . Given q ∈ ∂M let {ei(q)} be any
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h0-orthonormal basis of tangent vectors. Let Uij := U(ei, ej). Then < U, V >0=∑
i,j UijVij , is a pointwise ({ei}-invariant) inner product on symmetric two-tensor

fields. Write |U |20(q) =< U(q), U(q) >0. For any U and tangent vectors v, w (at the
same point q) we have |U(v, w)| ≤ |U |0|v|0|w|0 where |v|0 (|w|0) denotes the h0-norm
of v (w). For any Riemannian metric h on ∂M let trhU denote the trace of U with
respect to h. We have trhU = Uijhij where hij is the inverse matrix to hij . Defining
h−1 by h−1

ij = hij we have trhU =< U, h−1 >0. Also we will denote by |U |h the
(pointwise) norm of U but with respect to h.

It will be more convenient to define h̄(s) in terms of a C2 path of metrics h(t),
where s and t are related by ds = α(t)dt, and where α(t) is a positive C1 function of t,
required to satisfy α(0) = 1 and (dα/dt)(0) = 0 (these two conditions are important)
that will be chosen conveniently later. In other words given h(t) and α(t) define h̄(s)
by h̄(s) := h(t(s)), where t(s) would be found by inverting s(t) =

∫ t
0 α(t̄)dt̄ (but we

won’t need to do so). Thus

(3) ds2 + h̄ = α2dt2 + h,

Note that s(t) is a C2 function of t (and t(s) a C2 function of s) if α(t) is C1 and
therefore ds2 + h̄(s) = ds2 + h(t(s)) is C2 (over any chart (s, x1, . . . , xn−1) with
(x1, . . . , xn−1) a chart on ∂M , n = dim(M)). The remark is important as at the end
the function α(t) we will be C1 but not C2.

The idea now is to define h(t) independently of α(t) to satisfy automatically the
following two conditions:

II’. h0 = h

∣∣∣∣
t=0

, h′
0 = ∂

∂th

∣∣∣∣
t=0+

, h′′
0 = ∂2

∂t2 h

∣∣∣∣
t=0+

,

III’. ∂
∂th

∣∣∣∣
t=t+

> 0 (= 0, < 0),

and then note that if II’ and III’ hold so do II and III (for h̄(s)) independently of the
function α(t) defining t(s). Then for the given h(t), find a function α(t) to satisfy I.
In this form h̄(s) will satisfy I, II and III. As a matter of fact h(t) and α(t) will be
given at the end explicitly in terms of h0, h′

0, h
′′
0 and some constants defined out of

them. More precisely h(t) will be defined in (4) and α(t) will be defined as (14) (for
some value of a explained later) over an interval [0, tI ] and as (17) (for some value of
b explained later) over [tI , t+].

Derivatives with respect to s will be denoted with a tilde (′) and with respect to
t with a dot (̇).

We define h(t) by

(4) h(t) = h0 +
(trh0h

′
0)t

n − 1
h0 + F (t)ĥ′

0 + G(t)h′′
0

where the hatˆ in h′
0 denotes the traceless part of h′

0 (with respect to h0) and F (t)
and G(t) are two C2 functions dependent on a parameter δ > 0 (fixed later) which
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are precisely described in what follows. The function F (t) is defined to be C2, to have
F (0) = 0, Ḟ (0) = 1 and with second derivative given by

(5) F̈ (t) =






0 if t ∈ [0, δ4 ] ∪ [7δ4 ,∞),

− 2
δ2 (t − δ

4 ) if t ∈ [ δ4 , 3δ
4 ],

− 1
δ if t ∈ [3δ4 , 5δ

4 ],

− 1
δ + 2

δ2 (t − 5δ
4 ) if t ∈ [ 5δ4 , 7δ

4 ]

The explicit form of F (t) can be found by integrating (5) twice, but it is of no impor-
tance here. The function G(t) is defined to be C2, to have G(0) = 0, Ġ(0) = 0 and
with second derivative given by

(6) G̈(t) =






1 if t ∈ [0, δ4 ],

1 − 2
δ (t −

δ
4 ) if t ∈ [ δ4 , 5δ

4 ],

−1 + 2
δ (t −

5δ
4 ) if t ∈ [ 5δ4 , 7δ

4 ],

0 if t ∈ [7δ4 ,∞)

Again, the explicit form of G(t) can be found by integrating twice (6) but it is of no
importance here. A sketch of F (t) and G(t) can be seen in Figure 1. Most of what
quantitatively matters to us are the following simple global bounds (for all t)

|F | ≤ δ, |Ḟ | ≤ 1, |F̈ | ≤ 1
δ
,

|G| ≤ δ2, |Ġ| ≤ δ, |G̈| ≤ 1

along with the explicit expressions (which can be easily deduced)

F (t) = t, Ḟ (t) = 1, F̈ (t) = 0,

G(t) =
t2

2
, Ġ(t) = t, G̈(t) = 1

for t in [0, δ4 ], and

F (t) = δ, Ḟ (t) = 0, F̈ (t) = 0,

G(t) =
1
2

47
48
δ2, Ġ(t) = 0, G̈(t) = 0

for t in [7δ4 ,∞).

Observe that h0 + U , with U a symmetric two-tensor field, is point-wise positive
definite, namely a Riemannian metric, as long as (pointwise) |U |0 ≤ 1/2 (if |v|0 = 1
then h0(v, v)+U(v, v) ≥ 1− |U |0 ≥ 1/2 > 0). Therefore from (4), the bounds |F | ≤ δ
and |G| ≤ δ2, and the mean convexity hypothesis 2θ0 = trh0h

′
0 > 0, we obtain that
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Figure 1: Sketches of F and G and their first and second derivatives.

h(t), for all t ≥ 0, will be a C2 path of metrics provided δ ≤ δ0 with δ0 such that

δ0|ĥ′
0|0 + δ20 |h′′

0 |0 ≤ 1
2
, (pointwise)

From now on we will assume δ0 was fixed and that δ ≤ δ0 ≤ 1. On the other hand,
as Ḟ (t) = 0 and Ġ(t) = 0 for t ≥ 7δ/4, then, for t ≥ 7δ/4 we have

ḣ(t) =
trh0h

′
0

n − 1
h0

Therefore, the second fundamental forms Θ of the slices {t}× ∂M , for any t ≥ 7δ/4,
which are given by Θ = ḣ/2α, are positive definite regardless of the (positive) values
of α(t). Summarizing: we define h(t) by (4) which with t+ ≥ 7δ/4 satisfies II’ and
III’ automatically. Lemma 1 will be thus proved as long as we can chose δ (δ ≤ δ0)
and find α(t) defined at least over an interval [0, t+], with t+ ≥ 7δ/4, for which the
metric α2dt2 + h has non-negative scalar curvature R, namely I holds. We pass now
to explain how to find such δ and α(t).

First we observe that the scalar curvature R of (3) over every slice {t}× ∂M can
be written as

(7) α2R =
α̇

α
(trhḣ) − (trhḧ) +

3
4
|ḣ|2h − 1

4
(trhḣ)2 + α2R

where R is the scalar curvature of h(t) as a metric over {t} × ∂M (∼ ∂M). To see
this, derivate 2αθ = trhḣ = ḣijhij with respect to t and then use the expressions
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(valid in any dimension greater or equal than 3)3

(hij )̇ = −(ḣlm)hlihmj ,

θ̇ = −α(|Θ|2h + Ric(n, n)),

Ric(n, n) + |Θ|2h =
1
2
(R + |Θ|2h + θ2 −R),

|Θ|2h =
|ḣ|2h
4α2

Now, R will be non-negative on a domain [0, t+]× ∂M if for every t ∈ [0, t+] the right
hand side of (7), as a function on ∂M , is non-negative. We will think this condition on
the non-negativity of the right hand side of (7) as a condition on α(t). The function
α(t) that will satisfy this condition will be defined separately as a function (that we
call) α1 on the interval [0, tI ] and as a function (that we call) α2 on [tI , t+] that will
be seen to match C1 at t = tI (tI accounts for “intermediate” time). Let us give a
glimpse of what will come to better orient the reading. First, as can be seen from
the expressions (17) and (14), the functions α1 and α2 will depend (after δ, c1, c2, c3

have been fixed, see later) on parameters a and b respectively. Moreover it will be
that if a ≥ a0 ≥ 4/δ and 0 < b < δ/4 the expression (7) with α = α1 or α = α2

will be non-negative for t on the intervals [1, 1/a] and [b, Γ+] respectively. Now, the
required values of a and b to fix α1 and α2 and therefore α, will be such that the
graphs of (17) and (14) touch tangentially at a point α1(tI) = α2(tI) for some tI such
that b < tI < 1/a. A representation is given in Figure (2). We will be explaining all
this is more in detail in what follows.

At the moment we move to construct α2 and to justify its properties. We will
use the explicit expression (4) that we have for h(t) to get a suitable lower bound
expression for the right hand side of (7) in terms of α, δ and constants c̄0, c̄1, c̄2

depending only on h0, h′
0, h

′′
0 , and then find α2(t), over a suitable interval [b, t+] to

make such lower bound (with α = α2) non-negative (zero indeed). The expression for
the referred lower bound will be obtained from the following proposition and given
explicitly afterwards in (13).

Proposition 1 There are δ1 ≤ δ0, t1 ≤ 1, and positive numbers c̄0, c̄1, c̄2 depending
on (h0, h′

0, h
′′
0) such that for any δ ≤ δ1 and 0 ≤ t ≤ t1 we have the pointwise bounds

(over ∂M)

trhḣ ≥ 1
2
(trh0h

′
0) ≥ c̄0,(8)

|trhḧ − 3
4
|ḣ|2h +

1
4
(trhḣ)2| ≤ c̄1

δ
,(9)

R(h) ≥ −c̄2(10)

Proof of the Proposition 1: We show first (8). We need a couple of observations.
3To obtain the first derivate hikhkj = δ j

i , the second is the well known Riccati equation and to
obtain the third contract twice the Gauss-equation ([1], pg. 38).
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First, from the expression (4) and the bounds |F | ≤ δ, |G| ≤ δ2, we observe that for
any ε > 0 there are δ̄1 ≤ δ0 and t̄1 ≤ 1 such that for any 0 ≤ δ ≤ δ̄1 and 0 ≤ t ≤ t̄1
we have (pointwise) |h − h0|0 ≤ ε, (here and below we make of course h = h(δ, t)).
Second, it is simple to see that there is ε0 such that for any ε ≤ ε0, if |h−h0|0 ≤ ε then
|h−1 − h0|0 ≤ 2ε. From this and the general inequalities for symmetric two-tensor
fields U

|trh0U |− |h−1 − h0|0|U |0 ≤ |trhU | ≤ |trh0U | + |h−1 − h0|0|U |0

we deduce that if |h − h0| ≤ ε ≤ ε0 then for any U we have

(11) |trh0U |− 2ε|U |0 ≤ |trhU | ≤ |trh0U | + 2ε|U |0

Combing the two observations we have obtained that for any ε ≤ ε0 there are δ̄1(ε) ≤ δ0
and t̄1(ε) ≤ 1 such that for any 0 ≤ δ ≤ δ̄1(ε), 0 ≤ t ≤ t̄1(ε) and symmetric two-tensor
field U , the inequalities (11) hold.

Now taking the trace of the time derivative of (4) we get

trhḣ =
1

n − 1
(trh0h

′
0)(trhh0) + Ḟ (trhĥ′

0) + Ġ(trhh′′
0)

Using (11) with U = h0, ĥ′
0, h

′′
0 we conclude that for any ε ≤ ε0 there are δ̄1(ε) ≤ δ0

and t̄1(ε) ≤ 1 such that for any 0 ≤ δ ≤ δ̄1(ε), 0 ≤ t ≤ t̄1(ε) we have

trhḣ ≥ (trh0h
′
0) −

2ε√
n − 1

(trh0h
′
0) − 2ε|ĥ′

0|0 − δ|trh0h
′′
0 |0 − 2εδ|h′′

0 |0

In particular if δ ≤ δ1 ≤ δ̄1(ε) and t ≤ t1 ≤ t̄1(ε) then

(12) trhḣ ≥ (trh0h
′
0) −

2ε√
n − 1

(trh0h
′
0) − 2ε|ĥ′

0|0 − δ1|trh0h
′′
0 |0 − 2εδ1|h′′

0 |0

Choosing now ε(≤ ε0) sufficiently small and then δ1(≤ δ̄1(ε)) and t1(≤ t̄1(ε)) suffi-
ciently small we deduce from (12) that for any 0 ≤ δ ≤ δ1 and 0 ≤ t ≤ t1

trhḣ ≥ 1
2
(trh0h

′
0) ≥ inf

1
2
(trh0h

′
0) := c̄0 > 0.

as desired (the right hand side defines c̄0).
To obtain (9) we proceed similarly. Taking the trace of the second time derivative

of (4) and using the bounds |F̈ | ≤ 1/δ, |G̈| ≤ 1 we obtain

|trhḧ| = |F̈ (trhĥ′
0) + G̈(trhh′′

0)| ≤ |trhĥ′
0|

δ
+ |trhh′′

0 |

We use the same δ1 and t1 as was chosen for (8) before. Then using (11) with
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U = ĥ′
0, h

′′
0 in the previous equation we obtain for any 0 ≤ δ ≤ δ1 and 0 ≤ t ≤ t1

|trhḧ| ≤ c̄3

δ
+ c̄4

where c̄3, c̄4 depend only on (h0, h′
0, h

′′
0 ). Along similar lines one obtains −(3/4)|ḣ|2h +

(1/4)(trhḣ)2) ≤ c̄5 depending only on the data (h0, h′
0, h

′′
0). Therefore

trhḧ − 3
4
|ḣ|2h +

1
4
(trhḣ)2 ≤ c̄3 + δ(c̄4 + c̄5)

δ
≤ c̄3 + c̄4 + c̄5

δ
:=

c̄1

δ

as desired (the last equality defines c̄1 and we used δ ≤ δ0 ≤ 1).
Finally (10) follows from the fact that the biparametric family of C2 metrics h(δ, t),

0 ≤ δ ≤ δ0, 0 ≤ t ≤ 1 (on ∂M) given in (4), depends continuously (in C2) on (δ, t) and
that the set {(δ, t)/0 ≤ δ ≤ δ0, 0 ≤ t ≤ 1} is compact. Therefore for any 0 ≤ δ ≤ δ0
and 0 ≤ t ≤ 1 and consequently for any 0 ≤ δ ≤ δ1 and 0 ≤ t ≤ t1 (δ1 and t1 as
chosen for (8) and (9) before) we have R ≥ −c̄5 depending only on (h0, h′

0, h
′′
0 ). !

The estimations (8)-(10) lead, for any α > 0 with α̇ > 0 to the following lower
bound to the right hand side of (7)

(13)
α̇

α
c̄0 −

c̄1

δ
− c̄2α

2

as long as δ ≤ δ1 and t ≤ t1. Thus, R ≥ 0 if α > 0, α̇ > 0 and α̇/α− c1/δ − c2α2 ≥ 0
where we have defined c1 = c̄1/c̄0 and c2 = c̄2/c̄0.

• The function α2 is defined by

(14) α2(t) =

√
c1

δ

1
(
( c1
δ + c2)e−2(t−b)

c1
δ − c2

)

It depends on a parameter b that we require to lie in (0, δ/4) and that will be fixed
later. If δ1 and t1 are chosen sufficiently small then we claim that (14) is well defined
(i.e. there are no zeros in the denominator) at least on the interval [b, t+ := 4δ] (note
that we are defining t+ := 4δ). Indeed, if b ≤ t ≤ Γ+ = 4δ we have the estimate

(
c1

δ
+ c2)e−2(t−b)

c1
δ − c2 ≥ c1

δ
e−8c1 − c2

where δ ≤ δ1. If δ1 is sufficiently small then the right hand side of the previous
expression is strictly positive. Now we further impose 0 < δ ≤ inf{t1, δ1}/4. With
this condition on δ (and the definition of Γ+ as 4δ) (13) is a lower bound for the right
hand side of (7) for any function α > 0 with α̇ > 0 defined on [b, Γ+]. But α2 verifies

α2(b) = 1,(15)

α̇2/α2 − c1/δ − c2α
2
2 = 0(16)
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from which it follows that α2(t) > 0 and α̇2(t) > 0 on [b, t+] and that with the choice
α = α2 we have R ≥ 0 over [b, t+] × ∂M , no matter the value of b in (0, δ/4).

• The function α1 is defined by

(17) α1(t) = 1 + a2t2

It depends on a parameter a that we require to lie in (4/δ,∞) and that will be fixed
later. Note that 1 ≤ α1 ≤ 2 for t in [0, 1/a]. We claim that there is a0 ≥ 4/δ such
that if a ≥ a0 (but no matter which value), the right hand side of (7) with α = α1

will be non-negative and thus R ≥ 0 over [0, 1/a]× ∂M . Indeed, one has expansions

trhḣ = trh0h
′
0 + O(t),

−trhḧ +
3
4
|ḣ|2h − 1

4
(trhḣ)2 = −trh0 ḧ0 +

3
4
|ḣ0|2h0

− 1
4
(trh0 ḣ0)2 + O(t),

R = R(h0) + O(t)

where each of the O(t) is of the form O(t) = tf + O(t2) with f a function on ∂M
depending only on (h0, h′

0, h
′′
0) and |O(t2)| ≤ ct2 with c a constant also dependent

on (h0, h′
0, h

′′
0). Evaluating (7) at t = 0 we get that the scalar curvature R at the

initial time {0}×∂M (which we will denote by R0 below) is given by R0 = −trh0 ḧ0 +
3
4 |ḣ0|2h0

− 1
4 (trh0 ḣ0)2 +R(h0). With this information we can write the right hand side

of (7) as

(18)
α̇

α
(trh0h

′
0 + O(t)) + R0 + O(t)α2 + (α2 − 1)R0 + O(t)

with O(t) as explained before. Now, by the strict mean convexity hypothesis we have
trh0h

′
0 > 0 and also by the non-negative scalar curvature hypothesis we have R0 ≥ 0.

Finally α̇1 = 2a2t and α2
1 − 1 = (2 + a2t2)a2t2. Making z = at then α̇1 = 2z/a and

α2
1 − 1 = (2 + z2)z2. It is clear then that if a ≥ a0 with a0 big enough (depending

on (h0, h′
0, h

′′
0), we require also a0 ≥ 4/δ) then the expression (18) and therefore the

right hand side of (7) will be (pointwise) non-negative for t in the interval [0, 1/a] (i.e.
z ∈ [0, 1]). This shows the claim.

We proceed now to adjust a and b to fix α1 and α2 and therefore fix α. First
we make an observation. Consider the family of functions {α2} parametrized by
b ∈ [0, δ/4]. Recall that for each b, the corresponding function α2 is defined on [b, Γ+].
It is simple to see from (14) and (16) that there is a uniform bound (i.e. independent
of b ∈ [0, δ/4]) for |α2|, |α̇2|. Moreover, for all b ∈ [0, δ/4] the corresponding function
α2 has positive derivative (α̇2 > 0) on its domain [b, Γ+], in particular for b = 0. Now
fix a ≥ a0 in such a way that α̇1(t = 1/a) = 2a is strictly greater than the uniform
bound for |α̇2|. With this we will fix b and tI as follows. Note first that the graph
of α1 on [0, 1/a] and the graph of α2 for b = 1/a on [b = 1/a, Γ+] obviously do not
intersect. Now, starting from b = 1/a, decrease b and consider the graphs of the
functions α2(t), t ∈ [b, Γ+] which shift to the left as b ↓ 0. Then, because of how a

11



was chosen, we have that for some 0 < b < 1/a there is tI ∈ (b, 1/a) for which

α1(tI) = α2(tI),

α̇1(tI) = α̇2(tI)

A picture of this can be seen in Figure 2. This fixes b and tI . Thus we have defined
α1, α2 and tI and therefore the function α(t). This finishes the construction and the
proof of Lemma 1 for strictly convex boundaries.

a

1

2

tIb

_ _2 2 _2_1

0
1

Figure 2: Sketches of α1, α2 and the intermediate time tI . There are three graphs of
α2 corresponding to three different values of the parameter b: b = 1/a (right), final b
(middle), b = 0 (left). As b ↓ 0 the graphs of the functions α2 shift to the left, this is
indicated by the arrows.

We show now how to obtain the other two boundary possibilities, namely totally
geodesic and strictly concave. We discuss first the totally geodesic case. We will use
part of the construction of the previous strictly convex case. In particular take the
same δ and α as we did before but change in the expression (4) for h(t) the factor t
(of trh0h

′
0)h0) for example by the C2 function H(t)

H(t) =






t for t ∈ [0, 3δ],

Ḧε
6ε (t − δ)3 + (t − 3δ) + 3δ for t ∈ [3δ, 3δ + ε],

ε1/4Ḣε sin (t−3δ−ε)
ε1/4 + Hε cos (t−3δ−ε)

ε1/4 for t ∈ [3δ + ε, t+]

where Hε = H(3δ + ε), Ḣε = Ḣ(3δ + ε), Ḧε = Ḧ(3δ + ε) = −(1/ε1/2)Hε are given by

Hε =
3δ + ε

1 + ε3/2

6

, Ḣε = 1 − ε1/2

2
(

3δ + ε

1 + ε3/2

6

), Ḧε = − 1
ε1/2

(
3δ + ε

1 + ε3/2

6

)
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where t+ = 3δ+ε+ε1/4 arctan(Ḣεε1/4/Hε). Note that now t+ changed and is no more
equal to 4δ. The small number ε > 0 will be adjusted below. That the boundary {t =
t+} is totally geodesic can be seen directly from the fact that ḣ(t+) = (trh0h

′
0)Ḣ(t+)h0

and that Ḣ(t+) = 0. That the scalar curvature of (3) is non-negative can be seen
as follows. First on [0, 3δ] × ∂M the metric is the same that we have constructed in
the strictly convex case which had non-negative scalar curvature and indeed positive
at {t = 3δ}. Observe for this that the right hand side of (7) is, for t ∈ [2δ, 4δ],
greater or equal than α̇

α c̄0 +( α̇α c̄0− c̄1
δ − c̄2α2) which because of (13) is greater or equal

than α̇
α c̄0 > 0. Thus the scalar curvature R is positive on [2δ, 4δ] × ∂M . Second, on

[3δ, 3δ + ε] × ∂M , Ḧ ≤ 0 so the second term on the right hand side of (7) is positive.
Therefore from (7) we have

(19) α2R ≥ α̇

α
(trhḣ) +

3
4
|ḣ|2h − 1

4
(trhḣ)2 + α2R

Moreover, for t in [3δ, 3δ + ε] it is

1 − ε1/2

2
(

3δ + ε

1 + ε3/2

6

) ≤ Ḣ(t) ≤ 1

and consequently the range of Ḣ(t) (as t varies over [3δ, 3δ+ε]) converges uniformly to
one as ε tends to zero. Thus as ε approaches zero the right hand side of (19) converges
(pointwise) to the scalar curvature R at {t = 3δ} ⊂ [0, 3δ]×∂M , which as we pointed
out before, is positive. It follows that for ε small enough the scalar curvature R over
[3δ, 3δ + ε] × ∂M is positive. Third, on [3δ + ε, t+] × ∂M we have Ḧ = −(1/ε1/2)H
and moreover, in this range of t

Hε ≤ H(t) ≤ ε1/4Ḣε + Hε, 0 ≤ Ḣ(t) ≤ 1 − ε1/2

2
(

3δ + ε

1 + ε3/2

6

)

Therefore, if ε is small enough and recalling that ḧ = (trh0 ḣ0)Ḧh0, the second term
on the right hand side of (7), which is positive, dominates all the other terms thus
giving non-negative scalar curvature (positive actually).

The extension with strictly concave boundary is obtained simply by considering
the same h(t) and α(t) as we constructed above for the totally geodesic case but on
the slightly bigger interval [0, t+ + ε̄] with ε̄ is a sufficiently small number. !
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